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Abstract

Experiments and direct numerical simulations show that a dead-zone may
occur after a detonation makes a turn at a corner [1],[7],[8],[9],[10],[13],[14], thus
to affect the propagation of a lighting front. However, whether or not a
dead-zone still exists when the curvature of the obstacle is reduced seems
not yet answered. This report applies the detonation shock dynamics (DSD)
theory with the consideration that the DSD solution is a perturbation to
a Huygens Construction, and predicts that a dead-zone would always exist
mathematically when a detonation makes a turn, even with a smooth obstacle.

The physical size of a dead-zone in the case of a corner-turning is derived
to be the same as the critical radius based on the DSD studies [2],[4],[5] i.e. the
inverse of the critical (failure) curvature at the right most turning point on
a Dn − κ curve. In the case the radius of curvature of the boundary of the
obstacle is much larger than the critical radius, the thickness of the dead-zone

is thin because it is mathematically of a higher order, thus it may hardly be
observed in experiments.

A marked particle DSD wave-tracker is employed to verify the fact that
the detonation velocity on the surface of an smooth obstacle is reduced by the
Dn−κ curvature law and the DSD boundary angle to be lower than the failure
value. This gives support to the conclusion that a general dead zone exists
when a detonation turns over an arbitrary obstacle. The marked particle
DSD wave-tracker is verified with an analytical integral of the system for a
rate-stick geometry. The tracker is second order convergent in space. A burn-
table for PBX-9502 is created with the DSD tracker, and a local quadratic
least-squared fitting converts the data of the burn-table to lighting times on
the nodes of a hydro mesh.

It is expected that with a careful treatment for a Dn − κ relation with
a critical failure curvature, the dead-zone predicted in this report can be
simulated with the marked particle DSD wave-tracker we have.
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INTRODUCTION

A lighting time calculation for HE materials for a hydro simulation is important for a
correct predication of energy release. Experiments and direct numerical simulations
show that the velocity of propagation of a detonation front is affected by the front
curvature. In the case of a sufficiently high positive front curvature (diverging wave),
the detonation can be quenched. In the case of a corner-turning, a locally highly
curved front forms when the detonation makes a turn over the corner. An inactive
(or slowly reacting) region, the so-called dead-zone can be formed there. The above
behaviors can be described with the theory of detonation shock dynamics (DSD).

The detonation shock dynamics (DSD) theory can be used to derive a set of
evolution equations for a quasi-steady detonation propagation in an unbounded
homogeneous HE media. These front evolution equations predict that the front
velocity of a weakly curved detonation is affected by the front curvature to the
leading order. It is to say that

Dn = f(κ) (1)

where Dn is the detonation normal velocity and κ is the front curvature.

When the front is flat, the front velocity is a constant and is noted by DCJ which
is the Chapman-Jouguet velocity of a ZND wave. A positive front curvature (for a
diverging wave) will slow the detonation down. In the case of a corner-turning, the
curvature would be positive, and such a Dn −κ relation can be used to describe the
interior front propagation. Near a (confined) boundary, the normal of a detonation
would not be affected by the boundary if the angle ω between front and the boundary
is smaller than a given angle ωc. Otherwise a dragging occurs and the normal is bent
toward boundary to keep ω = ωc

[3].

A dead-zone may occur when a detonation makes a turn on the boundary where
front curvature exceed the critical value and cause the detonation propagation to
fail. This report will discuss a dead-zone predicted naturally with the DSD theory,
that can explain numerical and experimental results to certain extent.

AN ANALYTICAL HUYGENS SOLUTION OVER A 2D

OBSTACLE

In figure 1, a point lighting source S at (xS, yS) and an obstacle defined by y = f(x)
as its boundary are shown. For the discussion in this report, we assume f ′′(x) does
not change sign so there is no turning points on the boundary of the obstacle. The
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Figure 1: The path of lighting (a characteristic line, colored with red) over an obstacle
(with boundary colored blue) for a point C behind the line of sight. S is the source
of lighting. A and B are tangential points.

solution of a Huygens Construction at point C with ~rC = (x, y) is the minimum
distance from S to C. Assume there is no turning point existing on the boundary
of the obstacle (this is often the case), then the solution can be directly written as

D(x, y) = dA +

∫ B

A

√

1 + [f ′(ξ)]2dξ + dB. (2)

The point A and B make the tangential lines dA = |SA| and dB = |BC|. A
general tangent point at B (i.e., the (xB, yB) in fig. 1) associated with a point (x, y)
can be computed with the analytical equation

f(xB) − y = f ′(xB)(xB − x). (3)

AN EXPLICIT SOLUTION FOR A BOUNDARY DESCRIBED

BY AN ELEMENTARY CURVE

Explicit solutions of the tangential points (A and B in fig. 1) may exist when the
functional form of f(x) is simple enough. For example, in the case that the obstacle
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is represented with an elliptic
x2

a2
+

y2

b2
= 1,

the solution of the tangential point (xT , yT ) associated with a given point (x∗, y∗) is

xT =
a2b2x∗ ± a2y∗

√

a2(y∗)2 + b2(x∗)2 − a2b2

a2(y∗)2 + b2(x∗)2
, (4)

yT = ±b

√

1 − x2
T

a2
.

In the case that the source (xS, yS) is on the x-axis, that yS = 0, the solution is
simplified to

xA =
a2

xS

, and yA = ±b
√

1 − a2/x2
S,

then the whole solution becomes

D(x, y) = dA +

∫ θb

θa

√

a2cos2(θ) + b2sin2(θ)dθ + dB(x), (5)

where

θa = arctan

(

yA

xA

)

, θb = arctan

(

yB

xB

)

,

dA =

√

(
a2

x0

− x0)2 + b2(1 − a2

x2
0

),

dB(x) =
√

(x − xB)2 + (y − yB)2,

where (xB, yB) is the tangential point on the obstacle associated with (x, y), defined
in explicitly given by (eq. 3). The term in the middle for the arc-length is an elliptic
integral in this case. Without loss of generality, we assume that y ≥ 0 in the above
case because of symmetry.

THE GEOMETRY OF A HUYGENS FRONT NEAR AN

OBSTACLE

In the case of propagating with a constant velocity 1, the front geometry at time t
can be defined by the distance function D(x, y)

φ(x, y; t) = D(x, y) − t = 0. (6)
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The normal direction of the front is determined by

~∇φ = Dxı̂ + Dy ̂, (7)

Dx, Dy are derivatives of the distance function D(x, y), ı̂ and ̂ are the directional

unit vectors. The normal vector n̂ is defined by ~∇φ/|∇φ| from differential geome-
try. By definition, D(x, y) is the solution of the Eikonal equation |∇D(x, y)| = 1,

therefore |~∇φ| ≡ 1, the normal is simply n̂ = Dxı̂ + Dy ̂.

If interested, differentiating (eq. 2) very carefully with the consideration that
xB = xB(x, y) and applying (eq. 3) would provide

Dx =
x − xB

dB

, Dy =
y − yB

dB

, (8)

where dB =
√

(x − xB)2 + (y − yB)2.

Then the front curvature can be computed by κ = ~∇ · n̂ = ∇2D(x, y) = Dxx +
Dyy. A careful evaluation gives

Dxx =
1

dB

− (x − xB)2

d3
B

, Dyy =
1

dB

− (y − yB)2

d3
B

, (9)

therefore

κ = ∇2D(x, y) =
1

dB

. (10)

A fact that may not be visually noticeable but is mathematically obvious, is that
when point C is close to the boundary of the obstacle, dB can become arbitrarily
small, thus to make the front curvature approach positive infinity.

A PHYSICAL EXPLANATION

It may be a bit of a surprise at first that from (eq. 8) through (eq. 10), the radius
of the front curvature can be seen as the distance from a point C at (x, y) behind
the obstacle to the tangential point B on the obstacle associated with C (figure
2). However, if one carefully inspects the expressions of Dx, Dy, and the curvature
κ = ∇2D(x, y) in equations (9) and (10), it becomes clear that the solution of the
distance function over an obstacle is the same as a direct distance measurement as
if the lighting source is set at the tangential point (xB, yB), because the tangential
point has the shortest distance to travel to (x, y). Then the front curvature κ at

5



���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

line of sight

(x, y)

C

front

B

B(x  , y  )B

Figure 2: The tangential point B as a new lighting source for a point C in the
tangential line. Locally the lighting front, when passing C, is a piece of the circle
(dash red curve) centered at B in the neighborhood of C.

(x, y), must be d−1
B , the inverse of the radius of the circular front centered at (xB, yB).

κ becomes infinity naturally as dB goes to zero.

The above argument is solely based on the observation that, if a dead zone
does not exist when the detonation makes a turn over an obstacle, the intersection
(xB, yB) of front and the boundary of the obstacle would be physically a new lighting
source to any point on the tangential line (which is a characteristic line in this prob-
lem), because the tangential line is the shortest-path solution. Then a contradiction
occurs because the front curvature (the inverse of the radius of the “detonation-
sphere” centered at the tangential point) would be too big for the detonation to
travel to any potion on the tangential line sufficiently close to the tangential point .
Therefore a dead zone (as a boundary layer) has to exist when a detonation makes
a turn over the obstacle.

THE DSD PREDICTION OF A DEAD-ZONE OVER

AN OBSTACLE

For a quasi steady detonation described with the detonation shock dynamics (DSD),
the normal velocity Dn of the shock front is a function of the front curvature κ. In
the most general case, for a HE material of a large activation energy, the sub-sonic
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Figure 3: Left: a typical Dn −κ curve with turning points obtained with the detona-
tion shock dynamics. Right: a piece-wise linear Dn − κ employed for the discussion
in this paper.

portion (for a diverging detonation front propagation) of a Dn − κ curvature looks
like a backward S as shown in figure 3. A couple of turning points always exist. No
steady detonation can occur for a radius of curvature smaller than κ−1

max. This is to
say for a point over the obstacle with a tangential distance to the obstacle (which
defines the front curvature) less than κ−1

max, there will be no detonation because the
front curvature would be too high for a steady detonation front to propagate further.

Because any given point on boundary of the obstacle can be considered as a
lighting source in its neighborhood (for the region out of the line of sight) will for sure
produce a front curvature greater than the critical value assuming the detonation
can keep going from there. Therefore the detonation must die there. Only when the
front curvature is smaller than κmax (the tangential distance is greater than Rc), the
propagation of the detonation is possible (figure 4). The above argument, which is a
physically general one, does not depend on the solution of the Huygens construction
(eq. 2) over an obstacle. However, the solution of the Huygens construction can be
considered as the leading order approximation of a DSD solution, and can be used
to describe the geometry of a dead-zone to the leading order.
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Figure 4: A dead-zone starts to form at a point C with a tangential distance of Rc

to the tangential point B, as the front curvature arrives at κmax = R−1
c . The dashed

line marks the boundary of a dead-zone bounded also by the the boundary of the
obstacle (blue line). Note that OCB is a right triangle.

THE DEAD-ZONE FOR A CIRCULAR OBSTACLE

The LANL technique report[15] gives an analytical solution for a Huygens Con-
struction for a circular obstacle. A circle is a special case of an elliptic curve with
a = b = R, with R the radius if the circle. Therefore the dead-zone is the region
between the circular obstacle x2 + y2 = R2 and the circle x2 + y2 −R2 = R2

c , where
Rc = 1/κmax the radius for the critical curvature κmax. This dead-zone is bounded
by the line of sight (figure 5).

The thickness of this dead-zone (see fig. 4) is
√

R2 + R2
c − R = R2

c/2R plus
higher order terms. In the case that Rc/R = O(ǫ) ≪ 1 (usually true for a smooth
obstacle in real problems because the critical radius of curvature is much smaller
than the dimension of the obstacle), the dead-zone thickness is of the order ǫRc/2, a
small portion of a small length Rc. This explains why a dead-zone is hardly observed
in experiments other than a corner-turning.

The radius of curvature of the detonation front for PBX-9502 is about 2(cm)
in an axi-symmetrical corner-turning calculation where the dead-zone arrives its
maximum dimension[7]. Because in 3D the curvature of a detonation sphere is twice
as big as in 2D for a given radius, the 2D critical radius would be half of its 3D size.
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Then the critical radius for this type of HE, as discussed in previous sections can
be reasonably assumed to Rc ∼ 1(cm) (the 2D critical curvature). It is reasonable
to set the radius of the curvature of the obstacle to be R = 10Rc ∼ 10(cm) for it
is about the dimension of the practical problem, then the corresponding thickness
of the dead-zone is δ = R2

c/2R = 0.05Rc = 0.05(cm). A thickness of this value
is difficult to be observed. In fact it is probably much smaller than the size of a
computational cell.

Cylinder tests also show that the failure diameters for LX-17 is about 1.1 −
1.2(cm), and 0.7−0.8(cm) for PBX 9502[8]. If the DSD boundary angle is ωc = π/3[1],
the failure radius Rc (κ−1

max) will be of the same values, i.e. about 1(cm). At the
detonation failure velocity (usually about ten percent reduction from the CJ value
[13], for PBX 9501), for a linear Dn-κ relation, it means |~r − ~rB|/α ∼ 10 at the
edge of the dead-zone. α is then not a free parameter, rather a “material property”.
Its value should be the order of 0.1(cm) for PBX-9501 because this value would
reduce the detonation velocity by about 10 percent from the CJ value and quench
the detonation at the critical radius ∼ 1(cm).

Because of all the above, we can reasonably choose R ∼ 10(cm), Rc ∼ 1(cm),
and α ∼ 0.1(cm) as a typical parameter set for later discussions.

THE DEAD-ZONE IN A CORNER-TURNING PROBLEM

In the case of a corner-turning (as shown in fig. 5), the tip of the corner (xT , yT )
becomes the new lighting source for an point that is not in the line of sight. It is the
limit of R → 0 in the above case of a circular obstacle. The “thickness” of the dead-
zone will be Rc = κ−1

max. Therefore, the dead-zone has the shape of a piece of a pie,
with (xT , yT ) as the center, κ−1

max as the radius, bounded by the line of sight (defined
by the initial lighting source and the tip of the corner), and the top boundary of
the corner. An experimentally observed dead-zone may have its boundary shifted
because the measurements take place a while after the corner-turning occurs. The
area of this dead-zone is θcR

2
c to the leading order. The value of the DSD failure

(critical) radius Rc ∼ 1(cm) that we have chosen based on cylinder tests[8] is just
about the same size of the dead-zone observed in corner-turning experiments and
direct numerical simulations[7],[9],[14]. This observation strongly supports the above
result derived from the DSD theory.
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Figure 5: The leading order geometry of the dead-zone for a corner turning.

THE DEAD-ZONE FOR AN GENERAL OBSTACLE

The boundary of the dead-zone is defined by the path of the point with a tangential
distance of the critical length to the boundary of the obstacle. Fig. 6 shows a dead-
zone for a general obstacle. Mathematically, any portion of a sufficiently smooth
surface can be fit with a circle for a 3rd order accuracy, therefore locally most results
obtained previously for a circular obstacle still hold here.

The propagation of a steady detonation does not exactly follow the solution of
a Huygence construction. Because of a positive front curvature κ would slow down
the front velocity D − n. The more curved the front, the slower the front velocity.
This effect is described with a Dn − κ relation derived from the detonation shock
dynamics (DSD)[4]. On the boundary of a confined HE material, the angle ω between
a detonation front and the confinement must be limited with a specific DSD angle
ωc between a detonation front and the wall [3].

The mathematical analysis that has predicted a general dead-zone for a Huygens
front turning over an obstacle can not be directly applied to a DSD front because
the complication of the Dn−κ relation and the boundary angle constraint. However
with a numerical method to track the detonation front for a given Dn−κ and a DSD
boundary angle ωc, one is able to compute the terminal detonation velocity at the
point the front meeting the boundary. If the terminal velocity is below the failure
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Figure 6: A demonstration of the leading order geometry of the dead-zone for a
general obstacle with a point lighting source S. The critical radius (as the length of
a tangential line segment with one end moving along the boundary of the obstacle)
may have been exaggerated.

value (it corresponds to a failure curvature) we may conclude that a dead-zone exists
and is attached to the boundary of the confinement.

NUMERICAL TESTS WITH A MARKED PAR-

TICLE DSD FRONT-TRACKER

We use a marked particle front tracker for this purpose. The detonation front at a
time step is presented by particles distributed on the front. A particle shall move in
the normal direction with a velocity Dn computed from a given Dnκ relation. The
front curvature κ is obtained from fitting a curved surface to neighbor particles. For
a boundary particle, the fitting is constrained by a material specific angle between
the detonation front and the boundary condition. For example, in two dimensions,
each internal particle carries two neighbor particles, one on each side, a circle fit to
three points gives the curvature for the particle in middle. For a boundary particle,
its two nearest neighbor particles are employed to fit a circle that intersect the wall
with the angle ωc. If the boundary particle is ahead of the intersection of the fitting
circle and the boundary, move the particle back to the intersection (fig. 7).

This method seems to be an easy one to implement, especially in two-dimensions
for the particles are well ordered by arc-length of the front. However, there are a
few issues regarding the front turning an obstacle associated with the methodology.
First of all, because every interior particle moves in the normal direction of the front,
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A

C

B
O ω

c

Figure 7: The contacting point C between the detonation front and the HE boundary
is obtained by fitting the two interior particles A,B that are closest to the boundary
with a circle (centered at O) that intersects the boundary with a given angle ωc. If
the boundary particle is ahead of C, put it back to C.

so is not able to turn an obstacle (fig. 8, left); secondly, particles may run out of the
boundary; thirdly, the arc-length and curvature of the front may change to cause
resolution loss. The resolve the above issues of some particles run out of boundary,
the fitting circle of the particle that are closest to the boundary, with its neighbor
particles (one of them just becomes exterior) is used to intersect the boundary for
the position of a boundary particle. The front is then reset after a time advancement
of the front, by redistributing the particles on the front (fig 8, right).

TEST 1: A RATE-STICK

The rate-stick test maybe the simplest experiment to conduct for measuring a deto-
national front. With a rate stick test, a detonation wave propagates in a HE region
bounded between two parallel straight lines with the distance between them being
2R. In an axi-symmetrical geometry, R is the radius of a cylinder.

AN ANALYTICAL INTEGRAL FOR A LINEAR Dn − κ

The rate-stick problem can be scaled by R and the coordinate system (x, y) can be
set such that the x−axis is the axis of symmetry. Therefore the boundary of the
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Figure 8: The marked particles in figure on the left are not relaxed tangentially thus
some particles run out of boundary and most of the interior particles do not make the
turn over the obstacle. IN the figure on the right, the front is reset by redistributing
the particles on the front for keeping accuracy.

rate stick is y = ±1 in two dimensions and r = 1 in the axi-symmetrical geometry.
The direction of front propagation is the positive ı̂ direction.

To check the marked particle DSD-tracker we have, a linear Dn − κ dependence
that Dn = DCJ − ακ is employed because it has an analytical first integral in the
two-dimensional planar geometry.

In order to derive the analytical integral, the equation of front motion φt +
Dn|~∇φ| = 0 [3] can be written as

ft − Dn

√

1 + f 2
y = 0, (11)

notice that at the intersection of front and the boundary 1/
√

1 + f 2
y = sin(ω) where

ω in the angle of intersection. Thus one obtains

Dn = sin(ω)ft, (12)

on boundary.

The governing equation can be written again as

ft = DCJ

√

1 + f 2
y + α

fyy

(1 + f 2
y )

, (13)
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for κ = ~∇ · n̂ = fyy/(1 + f 2
y )3/2, here that unit normal vector is defined by

n̂ =
~∇φ

|1 + f 2
y |

=
ı̂ − fy ̂

√

1 + f 2
y

.

The speed of the traveling front C can be obtained analytically in this case of a
linear PDE. Let letter s stand for the slope fy, it is evident that fyy = ds/dy, and
the system governing the traveling front becomes

dy

ds
=

α

C(1 + s2) − DCJ(1 + s2)3/2
, (14)

and an explicit definite integral exists that the width of the channel 2R should be
equal to

∫

−S

S

α

C(1 + s2) − DCJ(1 + s2)3/2
ds =

2α

C
√

D2
CJ − C2

(T1 + T2 + T3),

where S is the slope at boundary with a value of tan(ωc).

T1 = −
√

D2
CJ − C2 arctan(S),

T2 = DCJ arctan

(

SDCJ
√

D2
CJ − C2

)

,

T3 = DCJ arctan

(

CS
√

(1 + S2)(1 − C2)

)

.

We clearly see that at the limit α → 0, as there is no curvature effect on the
front normal velocity, the traveling wave speed must be equal to DCJ .

With our choice of R = 1 (scaling in space), DCJ = 1 (scaling in time), and
S = 1 (which means the angle between front and the boundary is kept to π/4, the
above integral is simplified to

2α

C
√

1 − C2

(

−π
√

1 − C2

4
+ arctan

(

1√
1 − C2

)

+ arctan

(

C
√

2(D2
CJ − C2)

))

,
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which should be equal to 2, the width of the channel. The speed of the travelling
wave, C, is now a function of α. With the choice α = 0.1 and solve the above
equation with an iteration method, one obtains that C = 0.969723.

Run the marked particle DSD-tracker to time = 20, with dt = 0.0001 one obtains
the following values of the traveling velocity, varying the number of particles on the
detonation front. Because the time step need to be inversely proportional to the
square of the space between neighbor particles[3], we have not tried a finer resolution.
The initial front geometry is a circle that intersects the boundary with S = 1 to
satisfy the DSD boundary angle condition. However, other rather arbitrary initial
front geometries have been tried also and the same steady state of the traveling wave
are obtained.

N v dv
101 0.969806 8.3 ×10−5

201 0.969744 2.1 ×10−5

401 0.969728 0.5 ×10−5

Table 1: The traveling velocity in a rate stick obtained with the marked particle DSD-
tracker for various numbers of particles distributed on the detonation front. N is the
number of particles distributed on the front, v is the traveling velocity obtained with
the DSD-tracker, and dv is the difference to the theoretical value of the travelling
velocity (for Dn = 1 − 0.1κ).

From the table above we can see a second order convergence with our DSD-
tracker. This numerical experiment verifies that the DSD-tracker obtains the correct
steady state of a detonation. Figure 9 shows how a V-shaped initial front profile
progresses toward the steady state with the DSD-tracker.

TEST 2: WITH A CIRCULAR OBSTACLE

The geometry of the problem is taken from the TP-03 problem reported in [15]. The
boundary of HE is define by the arcs of a pair of concentric circles. The inner
boundary has a radius of 3 and the outer boundary has a radius of 10. Two initial
front geometries has been tested. The first is a circle centered at (-5, 0), the second is
a straight line segment. As our choices, both the initial front geometries intersect the
inner boundary with a specified DSD angle of choice ωc = π/3. This angle constraint
is not applied to the outer boundary because the intersection angle between front
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Figure 9: The steady state is obtained from a V-shaped initial front with the DSD-
tracker.

and boundary is always below ωc. A linear Dn − κ relation is employed for the test
in order to test the effect of the slope d(Dn)/d(κ) on the terminal velocity of front
at the boundary.

The Detonation Fails on Inner Boundary

The steady state for a “traveling wave” is arrived with both initial front geometry
(fig. 10). Because the steady front shape is invariant to the initial front geometry,
we compute the terminal velocity for a steady traveling detonation wave, varying
the slope on the Dn−κ. The results are shown in fig. 11. If we consider a detonation
would fail at Dn = Df < 0.9DCJ , then each of the terminal velocity obtained from
our DSD-tracker is below Df . Therefore, there must be a layer of HE material
that is not detonated, attached to the inner boundary. This is consistent with the
conclusion obtained with the analytical solution for a Huygens front, that a general
dead-zone must exist when a detonation turns over an obstacle, even when its surface
is smooth.
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Figure 10: The same steady state is arrived for a circular channel with two different
initial detonation fronts.

Figure 11: With a DSD boundary angle of π/3, and a linear Dn−κ that Dn = 1−ακ,
the terminal velocity reduction from the CJ value on the boundary of a obstacle
exceeds the failure value (0.9DCJ , marked by the line of height 1) for α = 0.05 (top),
α = 0.025 (middle), and α = 0.0125 for the circular test.
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Figure 12: The lighting time contours for a PBX-9502 point detonation with the
Circular geometry, obtained with our marked particle DSD-tracker. The boundary
DSD angle is set to π/4.

THE BURN-TABLE FOR PBX-9502

For the HE material PBX-9052, its DSD properties have been obtained with nu-
merical calibrations [16],[17]. With an application of our DSD-tracker, a burn table
for two-dimensional geometry can be obtained for relistic simulations of material
interaction with PBX-9502.

We employ the Dn − κ relation provided in [17] that

Dn

DCJ

= 1 + A[(κc − κ)µ − κµ] − Bκν

1 + Cκλ
, (15)

with DCJ = 7.818mm/µs, the critical (failure) curvature κc = 1.276mm−1, A =
0.2643, B = 0.5264, C = 27.81, and µ = 0.8042, ν = 0.5264, λ = 1.279. The DSD
boundary angle is set to ωc = π/4, for PBX-9502.

For the Circular problem we run the marked particle DSD-tracker and obtain
the detonation time contours shown in fig. 12. Fig. 13 show the DSD boundary
angle is enforced on the inner boundary.
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Figure 13: A close look of the DSD angle between detonation front and the boundary
of an obstacle, with lighting time contours for a PBX-9502 point detonation in the
Circular geometry, obtained with our marked particle DSD-tracker.

CONVERTING THE BURN-TABLE TO LIGHTING TIME ON A MESH

The lighting time contours, with marked particles distributed on each of them,
provide the lighting time data points. For a hydro simulation the lighting time on
a mesh is needed. For each HE node a lighting time needs be assigned from the
data on marked particles. This is achieved by putting the nodes and the marked
particles into a back ground virtual cubical. For a given node and the virtual cube
contains it, one collects a list of marked particles that are also contained in this cube
(fig. 14). The front arrival time on each particle of the list is used for a quadratic
least-squared fit that minimized the target function

J =
1

2

n
∑

1

(Tl(x, y) − Ti)
2, (16)

where the lighting time is assumed to have the form

Tl = ax2 + by2 + cxy + dx + ey + f,

where n is the number of particles available to support the least-squared fitting
a, b, c, d, e and f are parameters to be found by performing the fitting.
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Figure 14: The red data points (marked particles on various time contours) as well
as a given set of points (blue dots, considered as mesh nodes) are contained in a
background virtual Cartesian mesh (the green grid). The lighting contours are the
dash pink curves. The lighting time at a blue dot is obtained with a local least-squared
quadratic fitting with the data carried by the marked particles contained in nearby
virtual cubes.
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If not enough marked particles are there in the cube that contains the node,
particles contained in neighbor cubes can be used for more data points to support
the least squared solution. Clearly this approach would work for an arbitrarily
distributed point set, thus the lighting time on an arbitrary hydro mesh can be
obtained with running the DSD-tracker.

The lighting time on a hydro mesh for the circular geometry is obtained with
the approach described above and is shown in fig. 15.

CONCLUSION

With the DSD (detonation shock dynamics) theory, a general dead-zone is described
for a detonation front traveling over an obstacle and making turns continuously on
the boundary of the obstacle. When the radius of curvature |R| of the boundary of
obstacle is zero, i.e. the case of a corner turning, the dimension of the dead-zone is
predicted to be the same as the DSD critical radius Rc = κ−1

max from the analysis in
this report. In the case of a smooth obstacle Rc/|R| = ǫ ≪ 1, the thickness of the
dead-zone is ǫRc/2. An experiment that varies the curvature of the obstacle should
show a dead-zone gradually shrinking from the size of the critical radius (in the case
of a corner turning) to a thin region as the curvature of the boundary of the obstacle
reduces. This is in agreement with the fact that results form DNS show the reaction
zone stays away from the HE boundary [16]. The analysis in the paper suggests that
the DSD critical curvature κmax for a certain HE material can be obtained from a
corner turning test.

A marked particle DSD-tracker is used to verify that a general dead-zone may
also exist for a DSD wave with a specified boundary angle between the detonation
front and the boundary of the obstacle. This seems to be able to explain the fact that
in a DNS calculation of reactive flow, the reaction region is detached from the HE
confinement. The DSD-tracker has a second order convergence and this is verified
with an analytical integral for a linear Dn−κ relation. This DSD-racker can be used
to obtain a burn table for two-dimensional or three-dimensional axis-symmetrical
geometry, for a practical HE material such as PBX-9502. A method to convert the
burn table data to lighting time on a hydro mesh is described and demonstrated
with a PBX-9502 detonation for a curved geometry in two-dimensions.
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Figure 15: The burn table data at the marked particles on the countours for various
time is converted to the lighting time on the nodes of a hydro mesh, with a local
least-squared quadratic interpolation, for the circular test.
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